Hot water generation Steam to liquid Building heat & domestic (double wall)

The Maxi-Therm concept

We developed our patented, award-winning Vertical Flooded Heat Exchanger based on a proven system used in Europe for over 25 years – but we innovated to enhance its performance.

Like the European design, our Vertical Flooded Heat Exchanger features an oversized vertical shell & tube heat exchanger « **A** » that uses **LATENT & SENSIBLE** heat of steam to heat a liquid.

Because it is oversized, the heat exchanger becomes flooded with condensate that is evacuated at a preset subcooled temperature (usually 200°F), making it possible to optimize use of the **SENSIBLE HEAT OF STEAM AND ELIMINATE THE OCCURRENCE OF FLASH STEAM.** A condensate control valve « **B** » varies the level of condensate in the heat exchanger according to the process load «**D** & **G**» resulting in a 5.4% to 20% energy savings and reduction of greenhouse gas.

Maxi-Therm's patented innovations

When developing our system, we identified two major issues with the European system:

- 1. The steam pressure must always be lower than the liquid pressure.
- 2. There is no guarantee of stability of the heated liquid outlet set point temperature, which results in a high level of wasted energy, thereby compromising cost-effectiveness.

With Maxi-Therm's patented design, however, we resolved these issues

- No pressure reducing station on the steam side « C » and no safety relief valve(s) to the roof are required. In fact, we recommend using high-pressure steam (even over 170 psig and we always size the heat exchanger to subcool condensate to 200°F « D ». Plus, our heat exchanger uses more sensible heat, for greater performance and efficiency. Simply, our technology always uses ± 1000 btu/lb. of total heat of steam, either at 10 psig or 125 psig steam pressure.
- 2. We have achieved stability of heated liquid outlet set point temperature for building heat « H ». In fact, we are the first to guarantee ± 2°F of set point temperature, even when variable speed drives are used on the circulating pump « G ».
- 3. Stabilizing pump « J » pre-heats incoming liquid and creates additional turbulence in heat exchanger « A », averaging temperature towards sensor « K ». Therefore the purpose of the stabilization circuit is to stabilize the fluid temperature across the heat exchanger circuit.
- 4. No condensate pumping substation needed to lift condensate « E ».
- 5. Condensate Mixer « F » enables high pressure steam traps « I » to discharge directly in the flooded return line « E » without creating any water hammer.

175 psig (378°F), 125 psig (353°F)

US PATENT # 6,857,467 - 82 "Honorable Mention" by ASHRAE-AHR-Expo 2005 / Orlando, Florida First Prize For Product Design Technology 2002 A.Q.M.E. Canada.

(1) LESS MAKE-UP WATER

The boiler gets back more condensate so you use less fresh water. This also means less softening, chemical treatment, and surface blowdown.

(2) CONDENSATE PUMPS LAST LONGER

Condensate that is "too hot" causes pump cavitation and seal leaks.

(3) NO STEAM PRV STATION

The Maxi-Therm can use high, medium or low pressure steam directly.

(4) NO STEAM SAFETY RELIEF TO ROOF

Many times the vent piping is the most expensive part of the entire system. Maxi-Therm can eliminate the need for both the pressure relief and condensate receiver vent.

11

Maxi-Therm Control

(5) NO PUMPING SUB-STATION

The conventional heater will utilize a pump to push the condensate back to a central return station. The pump will require electricity or steam power, again using more energy. This power source will need a control system and isolation.

(6) SMALLER STEAM INLET AND CONDENSATE RETURN LINES

(7) SMALLER CONTROL VALVE

(8) VACUUM BREAKER

The Maxi-Therm runs at constant pressure and a vacuum breaker is not needed. Independent site testing demonstrated seven times less corrosion rate. (9) 0% FLASH 5.4% TO 20% ENERGY SAVING AND GREENHOUSE GAS REDUCTION

(10) STABILITY OF SET POINT TEMPERATURE ± 2°F

All major components are fabricated in the U.S.A 📒

Sequence of operation

Steam in the tubes at 100 psig

MC system operation example

Temperature is controlled by modulating the condensate (MC) not throttling the steam. A building heat system with constant 100 psi steam at 338°F. At full load 20°F rise, water enters at 160°F and leaves at 180°F. As entering water temperature rises, the amount of surface exposed to steam is reduced. Condensate is cooled to 200°F or less by entering water, eliminating flash steam. 5.4% to 20% energy savings. No steam PRV station, no safety relief to roof, no pumping sub-station.

Online catalog maxi-therm.net

Manufacturing facilities and service technicians in the United States & Canada

- Custom fabrication per ASME Section VIII DIV #1, U-UM-R stamp.
- Quality control assurance program CSA B51, ANSI B 31.1, B 31.3, B 31.5.
- National board ISO 9001-2000.
- Over 250 units installed from 10 usgpm to 2750 usgpm in HOSPITALS, UNIVERSITIES and institutions.

